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The complex flow and wave pattern following an initially planar shock wave
transmitted through a double-bend duct is studied experimentally and theoreti-
cally/numerically. Several different double-bend duct geometries are investigated
in order to assess their effects on the accompanying flow and shock wave attenuation
while passing through these ducts. The effect of the duct wall roughness on the shock
wave attenuation is also studied. The main flow diagnostic used in the experimental
part is either an interferometric study or alternating shadow–schlieren diagnostics.
The photos obtained provide a detailed description of the flow evolution inside the
ducts investigated. Pressure measurements were also taken in some of the experi-
ments. In the theoretical/numerical part the conservation equations for an inviscid,
perfect gas were solved numerically. It is shown that the proposed physical model
(Euler equations), which is solved by using the second-order-accurate, high-resolution
GRP (generalized Riemann problem) scheme, can simulate such a complex, time-
dependent process very accurately. Specifically, all wave patterns are numerically
simulated throughout the entire interaction process. Excellent agreement is found
between the numerical simulation and the experimental results. The efficiency of a
double-bend duct in providing a shock wave attenuation is clearly demonstrated.

1. Introduction
Interactions between shock waves and structures have been the subject of numerous

experimental and theoretical studies in recent decades, focusing on both understanding
the basic physics of the flow field that develops and employing the accumulated
knowledge for engineering treatment of explosion-related phenomena. When a planar
shock wave propagates in a uniform-cross-section duct, it slowly attenuates due to
momentum and energy loses via friction and heat transfer. A much faster decay
in the shock wave strength and shape (pressure signature) is observed when it
propagates into a bent duct. In this case the main mechanism responsible for reducing
the shock wave strength, in addition to its diffraction over the bend corner, is
multiple shock wave reflections initiated by the bending. Interest in shock wave
propagation in ducts having bends or other complex geometry features has been
stimulated not only by the theoretical background, such as the analysis of shock
wave propagation, diffraction and reflection phenomena in ducts, but also by its
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practical engineering applications. Some examples are: hazardous explosions in mine
shafts or other industrial explosions; gas transmission pipes; exhaust systems of
internal-combustion multi-cylindrical engines and in the design of shelters from
bomb-generated explosions. Following such explosions, the effects of the air blast
are typically transmitted to a large distance via shock wave propagation. A complex
flow is generated behind the shock front due to multiple interactions between the
transmitted shock wave and structures encountered by the shock. The propagation
of a planar shock wave and its subsequent interactions with the duct walls, result
in a highly non-stationary two-dimensional flow. In most of the above-mentioned
examples, one is usually interested in quickly reducing the intensity (impulse) of the
propagating shock, or blast, wave.

Studies published in the past three decades were limited to either experimental
investigations or approximate theoretical/numerical solutions based on the assump-
tion that the flow is quasi-one-dimensional. For example see Dekker & Male (1967),
Dadone, Pandolfi & Tamanini (1971), Sloan & Nettleton (1971), and Heilig (1975).
Approximating a non-steady flow in a duct of smoothly varying cross-section as
quasi-one-dimensional may in some cases conform to the full two-dimensional solu-
tion; however, this is not so for every flow. For example, as shown in Igra, Wang &
Falcovitz (1998), a simple rarefaction wave encountering an area convergence gives
rise to an inherently two-dimensional flow, which even at late times differs from the
corresponding one-dimensional solution. The flow in a double-bend duct considered
herein is far more complex than that treated in Igra et al. (1998), and therefore it will
certainly be wrong to treat it as a quasi-one-dimensional flow.

The present paper provides a comprehensive experimental and numerical study
of shock wave propagation in several different double-bend ducts (Z-shaped tunnel)
shown schematically in figure 1. Geometries similar to those shown are frequently
used in underground shelters, with the aim of attenuating an explosion-generated
blast wave before it enters the shelter interior. In order to assess the effects of the
duct wall roughness on the strength and shape of the transmitted shock wave, one
design was investigated with two alternative variants. The first is a duct having smooth
walls (figure 1a), and the other has rough walls as shown in figure 1(b). For studying
the effects associated with changes in the volume inside the double-bend duct on the
flow developed behind the transmitted shock wave, geometries shown in figures 1(c)
and 1(d) were investigated. The experimental part of the present study consists of
either an interferometric or a shadowgraph/schlieren study of wave propagation into
double-bend ducts. In the theoretical part, a two-dimensional numerical solution
describing the flow field developed behind the transmitted shock wave is obtained.

2. Experimental set-up
Experiments using interferometric diagnostics were conducted in the 102 mm ×

178 mm hypersonic shock tube of the Shock Wave Research Center, Institute of
Fluid Science, Tohoku University, Japan. The models employed in these investigations
are shown schematically in figures 1(a) and 1(b). In all experiments conducted with
these geometries the test and the driving gases were nitrogen; the initial pressure and
temperature in the shock tube driven section were 101.3 kPa and 294 K, respectively.
The incident shock wave Mach number, prior to its impingement on the double-bend
duct model, was Ms = 1.2± 0.5%. In the experimental work the incident shock wave
Mach number was deduced by recording the time of arrival of the shock wave at
two pressure transducers, each placed at a different point on the shock tube wall.
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Figure 1. Schematic descriptions of the models investigated: (a) smooth-walled duct; (b)
rough-walled duct; (c, d) geometries for the investigation of changes in volume inside the duct.
Dimensions are in mm.
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From the known distance between these pressure transducers and the measured time
of arrival, the incident shock wave velocity is readily deduced. The shock wave Mach
number is based on this velocity and the measured pre-shock gas temperature. It is
probable that a small error might exist in the deduced Mach number. This is due to
experimental errors and to shock wave attenuation between the place where the shock
wave velocity was measured and the location of the shock tube test section, where
the interferograms were taken. In the geometry to be investigated (figures 1a and
1b), a sequence of several interferograms was taken for quantitatively measuring the
density fields and to record the history of a planar shock wave interaction with, and
propagation into, the double-bend duct. In each experiment a single interferogram
was taken at a pre-set time delay in order to cover the entire flow duration of about
1.4 ms.

Experiments with geometries shown in figures 1(c) and 1(d) were conducted in the
4 cm × 11 cm shock tube of the Ernst Mach Institute, Freiburg, Germany. In these
experiments the flow field that developed inside the double-bend ducts was recorded
by taking a sequence of alternating shadowgraph/schlieren photographs. A set of 24
photographs was taken at each shot covering the entire flow duration of about 1 ms.
Details about the shock tube facility and the optical diagnostics used can be found
in Mazor et al. (1992).

3. Numerical scheme
The time duration of the flows considered is less than 1.5 ms. In such short flow

durations friction losses and heat transfer can safely be ignored in comparison with
the on-coming flow momentum and energy. Therefore, in the present study, the
gas flow can be modelled by the Euler equations, which express conservation of
mass, momentum and energy for an inviscid compressible fluid obeying a perfect
gas equation of state. For a two-dimensional, non-stationary flow the conservation
equations, expressed in Cartesian coordinates, are

∂

∂t
U +

∂

∂x
F(U ) +

∂

∂y
G(U ) = 0 (1a)

where

U =

 ρ
ρu
ρv
ρE

 , F(U ) =

 ρu
ρu2 + p
ρuv

(ρE + p)u

 , G(U ) =

 ρv
ρuv

ρv2 + p
(ρE + p)v

 . (1b)

U is the vector of unknown flow variables, F(U ) and G(U ) are the flux components
in the x- and y-directions, respectively; p, ρ, u, v and E are pressure, density, (x, y)
velocity components and total specific energy, respectively; x, y and t are Cartesian
coordinates and time. A perfect gas equation of state is assumed, yielding

p = (γ − 1)ρe, E = e+ (u2 + v2)/2, (2)

where e is the specific internal energy and γ > 1; here γ is the constant specific heats
ratio.

The finite-difference approximation to (1a) is formulated as a Strang-type operator
splitting (Strang 1968), using the GRP (generalized Riemann problem) scheme as
the one-dimensional finite-difference operator. The unique feature of the splitting
procedure is preservation of second-order accuracy, i.e. as GRP is second-order
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(a) (b)

Figure 2. (a) Interferogram and (b) the corresponding simulation, showing the interaction of an ini-
tially planar shock wave with a double-bend duct, t = 37.5 µs. Initial conditions are P1 = 101.3 kPa,
T1 = 21◦, and Ms = 1.2.

accurate so is the two-dimensional conservation law scheme using GRP as its one-
dimensional ‘building block’. Details regarding the numerical scheme employed here
are given in Igra et al. (1996).

4. Results and discussion
In results shown in figures 2 to 11 all experimental findings (part ‘a’) are interfero-

gram photos, and the corresponding numerical results (part ‘b’) show lines of constant
density. The computation domain is a rectangle 330 mm× 150 mm. In executing the
numerical solution the flow field shown in figure 1(a) was divided into a grid of
990× 450 square cells. Such a fine mesh ensures a high resolution in the numerical
reconstruction of the flow field investigated. The time step is set equal to 0.333 µs, in
compliance with the CFL stability condition.

In the following, most of the experimental results obtained (interferograms), along
with their appropriate simulations, are shown. In figure 2, the wave pattern observed
shortly after the incident shock wave arrives at the inlet to the double-bend duct
is shown. It is apparent from figure 2(a) that part of the incident shock wave is
reflected from the facing rigid wall, and the other part is transmitted into the duct.
Both the reflected and transmitted waves are clearly visible in the interferogram and
also in the simulation (figure 2b). The geometry and the location of both waves are
perfectly reproduced in the numerical solution (figure 2b). It should be noted that in
the simulation, thick lines represent surfaces through which discontinuous changes in
density take place (shocks and/or contact surfaces); the thin lines are lines of constant
density (isopycnics). Comparing figure 2(a) with figure 2(b), it is apparent that even
the fringes shown in the interferogram are perfectly reconstructed in the simulation,
both in shape and number of lines. The shock wave transmitted into the horizontal
intake of the double-bend duct is planar and the flow behind it is subsonic. (As stated
earlier, the incident shock wave Mach number is 1.2.) It will remain planar until it
reaches the first expansion corner of the double-bend duct.

The flow developed in the double bend duct 100 µs later is shown in figure 3. The
first stage of the interaction process in the bending segment is shown; as expected for
a subsonic flow, the flow expansion over the 90◦ corner is via a vortex shed from the



260 O. Igra, X. Wu, J. Falcovitz, T. Meguro, K. Takayama and W. Heilig

(a) (b)

Figure 3. As figure 2 but at t = 137 µs.

(a) (b)

Figure 4. As figure 2 but at t = 237 µs.

corner. The diffraction of the transmitted shock wave into the vertical section of the
duct is clearly visible in figure 3. Owing to this diffraction the transmitted, initially
planar shock wave, has evolved into a curved shock. Its upper part, which is normal
to the horizontal wall of the duct, is stronger than its lower part, which diffracts
around the corner into the vertical segment of the duct. This is typical for shock wave
diffraction over an expansion corner, where the flow exhibits self-similarity (Igra
et al. 1996). As observed for the earlier time, here too a near-prefect agreement is
found between the interferogram (figure 3a) and its numerical simulation (figure 3b),
regarding the wave shape and location, and fringes versus isopycnics. The flow near
the inlet to the double-bend duct looks like a suction flow. It is accelerated via two
vortices located just downstream of the duct inlet, producing a ‘suction’ effect in the
flow field investigated. Outside the ‘sucked flow pocket’, seen in front of the duct
inlet, the flow velocity is zero. This is expected for the flow behind a planar head-on
reflected shock wave.

Until the transmitted shock wave (diffracting over the upper-left corner of the duct)
hits, head-on, the right-hand wall in the vertical segment of the duct, the self-similarity
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of the flow over the 90◦ expansion corner persists. This changes abruptly after the
shock collides with the facing wall as is evident in figure 4(a), taken 100 µs after the
event shown in figure 3. In figure 4(a) the following shock waves can be seen: The
transmitted shock wave, which was originally a planar shock, is deformed into a weak
curved shock wave (thin line). This shock is now seen in the lower horizontal segment
of the duct. Before reaching this location it experienced a head-on collision with the
wall of the vertical segment of the duct (right-hand wall), and the reflected shock
wave propagates toward the other wall of the vertical segment of the duct (left-hand
wall). This reflected shock wave is split into three different segments as is shown
clearly in figure 4(b). The upper part, an upstream-facing shock wave, is propagating
towards the duct inlet; the lower part hits the left-hand wall of the vertical segment
of the duct and is reflected toward the opposite wall. This is clearly seen in both the
interferogram and in its simulation. The central part interacts with the vortex shed
from the first expansion corner inside the duct and engulfs the low-pressure zone
around the vortex. This part of the reflected shock wave will cause splitting of the
vortex, and is thereby significantly attenuated. Therefore, this shock is observed in
figure 4(b) only as shifts in isopycnics and not as a dark solid line like the other two
(stronger) parts of the reflected shock wave.

When comparing the interferogram (figure 4a) with its simulation (figure 4b), it is
apparent that a good agreement exists between the two with respect to the waves and
vortex pattern. The fact that the transmitted shock wave was significantly weakened
during its propagation through the double-bend duct is shown in figure 4(b) by the thin
line (weak) that represents it, in contrast to the thick line indicating the transmitted
shock wave in figures 2(b) and 3(b). It should be noted that interferometry is much
more sensitive in detecting small density changes than the present numerical solution;
therefore the fringe counting and shape, although very similar, is not identical in
figures 4(a) and 4(b). However, all major waves and vortices are accurately reproduced
in the simulation.

At later times, multiple reflection from the duct walls and from collisions between
reflected shock waves make the flow field highly non-steady, as shown in figure 5(a),
which shows the flow field 100 µs after that in figure 4(a). Since the flow behind the
transmitted shock wave is subsonic, the flow expansion over the duct lower right
corner is also via a vortex shed from that corner. It is clear from figure 5(a) that
the transmitted shock wave is a weak curved shock wave, the front of which has
just emerged from the duct outlet. It will experience continued expansion outside
the duct exit (the outflow), until the flow behind it reaches pressure equilibrium with
the surrounding gas. As described while discussing figure 4(a), the upper part of the
reflected shock wave continues propagating upstream towards the duct inlet. The
central part of the reflected shock wave causes a splitting of the vortex: now two
vortices are seen just downstream of the duct upper left corner. This central part of
the reflected shock wave is weakened by its splitting collision with the vortex and can
hardly be seen in figures 5(a) and 5(b). It is detectable in the enlargement of the flow
field, near the upper left corner of the duct, shown in figure 5(c). There it appears as a
weak compression wave engulfing the two vortices. It should be noted that a similar
splitting of a corner-shed vortex by a shock wave, diffracting over a 90◦ corner, was
also observed in Kliene, Ritzerfeld & Groenig (1995).

For evaluating the effect associated with the duct wall roughness, experiments and
simulations made with the model shown in figure 1(a) were repeated with a similar
double-bend duct, but equipped with 6 mm deep grooves as shown in figure 1(b).
The initial flow conditions and the grid for the numerical solution are the same as
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(a)
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Figure 5. (a) Interferogram, (b) simulation, and (c) enlargement of a region near the upper-left
corner of (b), showing the propagation of the transmitted shock wave inside the double-bend duct;
t = 337 µs.

those used previously for the geometry shown in figure 1(a). Similar results were
obtained for an early time after the penetration of the transmitted shock wave into
the duct inlet; see figures 2 and 6. A noticeable difference between the two figures is
the appearance of expansion vortices, in figure 6, due to the flow expansion generated
by the first, upper and lower, grooves downstream of the duct inlet. As could be
expected, at later times a noticeable difference is observed between the two flows and
wave patterns; compare figures 3 and 7. In the duct equipped with grooves (figure 7)
the multiple shock reflections from all the grooves passed by the transmitted shock
wave generate a complex, non-uniform flow field. In the interferogram shown in
figure 7(a) multiple shocks and vortices are present. Some of them are so weak that
they are not visible in the simulation given in figure 7(b). However, all major waves
and vortices are visible in the simulation, such as the transmitted shock wave, shock
waves reflected from the first few grooves, the two inlet vortices and the expansion
vortex at the duct upper-left corner where the flow expands behind the diffracted
shock wave.
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(a) (b)

Figure 6. (a) Interferogram, (b) the corresponding simulation, showing the interaction of an
initially planar shock wave with a rough-walled double-bend duct, t = 37.5 µs. Initial conditions as
in figure 2.

The difference between the smooth and the very rough wall ducts becomes more
pronounced as time passes, as is evident from comparing figure 4 with figure 8. Unlike
the flow shown in figure 4, in figure 8 no quasi-uniform flow zone could be found.
The transmitted shock wave is reduced now to a very weak wave; in the simulation
(figure 8b) it appears as a Mach wave. In order to clearly demonstrate the strong
effect that the wall roughness has on the transmitted shock wave, pressure signatures
were computed at several points (mid-points) along the duct wall, and are shown in
figure 9. It is clear from this figure that the pressure jump across the transmitted
shock wave is significantly smaller in the case with very rough walls: about half the
jump experienced in the smooth wall case. The fact that the highest first pressure
jump is experienced at point P2 is not surprising since there the transmitted shock
wave is reflected, head-on, from the duct right-hand vertical wall.

Going back to figure 8, it is apparent that the simulation (figure 8b) reconstructs
well all major waves appearing in the interferogram of figure 8(a). When comparing
the rough wall case (figure 8) with the smooth wall case (figure 4) the differences;
discussed above can be summarized as:

(i) The transmitted shock wave is weaker in the rough wall case. This is also evident
from the transmitted shock wave position in the two figures. The stronger the shock,
the faster it propagates inside the duct. It is evident that in figure 4 the transmitted
shock wave is observed further downstream than in figure 8.

(ii) In figure 4 the interaction of the reflected shock wave (from the duct right-
hand vertical wall) with the expansion vortex is clearly visible. The reflected wave is
composed of three parts: one propagates upstream toward the duct’s inlet, the second
engulfs the vortex and the third hits and thereafter reflects from the duct left-hand
vertical wall. A different wave pattern is observed in figure 8. Now three relatively
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(a) (b)

Figure 7. As figure 6 but at t = 137 µs.

strong shock waves are present just downstream from the duct first expansion corner.
The one nearest to the duct right-hand vertical wall is the primary reflection of
the transmitted shock wave. It is an upstream-facing shock wave and it is followed
by a secondary, wavy shock wave reflected from the bottom of grooves in the duct
right-hand vertical wall. Since the primary reflected shock wave in the rough wall case
is weaker than its counterpart in the smooth wall case, in its propagation upstream
toward the duct inlet, it lags relative to its position in figure 4. Furthermore, in the
rough case (figure 8) its lower part is so weak that it is hardly visible in figure 8(b).
In figure 8(a) it is seen as a weak wave just touching the duct left-hand vertical wall.
The third shock wave seen in figure 8, near the duct first expansion corner, results
from coalescence of compression waves generated by reflections of the transmitted
shock wave from passing the groove bottoms encountered along the duct walls. These
compression waves can be seen in figure 7(a) prior to their coalescence to a shock
wave.

To the inexperienced eye the three shock waves discussed above, appearing in
figure 8, might be hard to detect. For clarity the computation was repeated for
three simple geometries: one is a completely smooth wall duct terminated by an
endwall; the second has the same geometry as the first with the exception that is
endwall is grooved; in the third, all walls are grooved. The results obtained, shown in
figure 8(c), clearly demonstrate the groove’s effect on the wave pattern obtained. In
the completely smooth wall case, shown at the top of figure 8(c), the expected single
reflected shock wave is clearly observed. In the results obtained for a grooved endwall
one easily detects two shocks. The first is the reflected shock wave from the groove
frontal surface while the second is the wave reflected from the groove rear surface.
The three shock waves mentioned while discussing figure 8(a) can also be detected in
the lower part of figure 8(c); here all walls are grooved. As explained, the third shock
wave results from the coalescence of compression waves generated by reflections of
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Figure 8. (a, b) As figure 6 but at t = 236 µs. (c) Isopycnics showing the flow ahead of and behind
a reflected shock from the duct endwall for three different duct wall surfaces. Initial conditions are
P1 = 101.3 kPa, T1 = 21◦, and Ms = 1.2.

the transmitted shock wave from passing the groove bottoms encountered along the
duct top and bottom walls.

When comparing figure 5 with the corresponding rough-wall case (figure 10) it
is apparent that in both cases the wave emerging from the duct outlet is a weak
compression wave (Mach wave). The triple shock structure observed and discussed
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Figure 9. Calculated pressure histories at various positions along the duct wall.

in figure 8 appears in figure 10 as an upstream-facing, bifurcated shock wave. In the
interferogram (figure 10a) this wave appears as thin lines between the 4th and the
5th grooves from the duct inlet. Primary vortices seen in figure 10(a) are reproduced
correctly in the simulation (figure 10b). It is apparent from figures 10(a) and 10(b)
that the flow in the last portion of the double-bend duct (the zone extending over the
last three grooves of the duct) is much quieter than the upstream portion: almost a
quasi-uniform flow. The double vortex observed in figure 5 and discussed earlier is also
seen in figures 10(a) and 10(b). The last interferogram (figure 11a), taken 200 µs after
that of figure 10(a), contains many vortices. The two appearing at the duct outlet are
due to the subsonic flow expansion outside the duct exit plane. These are accurately
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(a) (b)

Figure 10. As figure 6 but at t = 337 µs.

(a) (b)

Figure 11. As figure 6 but at t = 537 µs.

reproduced in the simulation shown in figure 11(b). The others, resulting from flow
expansion over the two expansion corners of the duct and over corners produced by
grooves placed along the duct wall make the duct flow highly non-uniform.

As mentioned in the Introduction, geometries like those shown in figures 1(a)
and 1(b) could be useful for quickly attenuating shock and/or blast waves. In order
to demonstrate and bring out their usefulness computations were repeated for four
different geometries shown in figure 12. All four geometries have the same horizontal
length and the same duct width. Pressure histories at two different location facing the
duct exit were evaluated, for the following initial conditions: P0 = 1.1 bar, T0 = 300 K
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Figure 12. Calculated pressure histories at two different stations downstream of the duct exit
plane, for four different geometries.

and Ms = 1.2. The first (at location marked P1 in figure 12), is placed at a distance
equal to one half of the duct width downstream from the duct’s exit; the second, P2

is at a distance equal to the duct width downstream from the duct exit plane. It is
clear from the results shown in figure 12 that the highest pressure jump through the
emerging shock wave is experienced in the case of a straight duct having smooth wall
(case 1 in figure 12). A smaller jump is experienced when the straight duct has rough
wall (case 2 in figure 12): a reduction of 15% in the maximum pressure obtained at P1

and 19% for the maximum pressure obtained at P2. In both cases the emerging wave
has a clear shock wave signature, i.e. a sudden pressure jump. This is no longer the
case when a double-bend duct is employed (cases 3 and 4 in figure 12). In the case of
a smooth-wall double-bend duct (case 3) the emerging wave is a sequence of five weak
shock/compression waves. As expected, the emerging wave strength decreases with
increasing distance away from the duct outlet. Adding grooves to the double-bend
duct (rough wall, case 4) significantly alters the pressure signature of the emerging
wave. Now both waves (at P1 and at P2) are compression waves, and there are no
sudden pressure jumps. In addition, the maximum pressure reached through these
compression waves is 30% lower than that experienced in case 1; see figure 12. It may
therefore be concluded that the combination of a double-bend duct with rough walls
is an effective geometry for reducing a shock wave to a less harmful compression
wave.

The optical diagnostics employed in experiments done with geometries shown in
figures 1(c) and 1(d) were alternating shadowgraph and schlieren methods. Unlike
the previously discussed cases, now a sequence of 24 frames of alternate shadow-
graphs/schlieren photos were taken during each shot, covering a flow duration of
about 600 µs. Simulations, which follow each shadowgraph/schlieren photograph, are
results of a single computation sampled at the indicated time during the observed
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Figure 13 (a–f). For caption see page 272.

flow. Since it is rare to have such a detailed experimental record of flow evolvement
we believe it is worthwhile to show the complete set; furthermore, the very good
agreement observed between experimental and numerical results for the entire flow
duration attests to the reliability of the proposed physical model (equation (1)) and
its numerical solution. The first set of results, which refers to the geometry shown
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Figure 13 (g–l). For caption see page 272.

in figure 1(c), is shown in figures 13(a) to 13(w), and was obtained for the following
initial conditions: P1 = 0.987 bar, T1 = 23.4 ◦C and Ms = 1.3466. The geometry
shown in figure 1(c) was divided into a grid of 660× 180 square cells. As expected,
until the diffracted shock wave hits the duct bottom wall (at t ≈ 175 µs, figure 13g)
the flow is essentially a shock wave diffraction over a 90◦ corner. Since the post-
shock flow is subsonic the flow expansion is accompanied by a vortex shed from
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Figure 13 (m–r). For caption see page 272.

the corner. Disturbances generated at the corner propagate both downstream and
upstream.

It is clear from figures 13(a) to 13(g) that the numerical results reproduce accurately
the experimentally observed wave pattern. The first collision of the diffracted shock
wave with the duct walls is shown in figure 13(h) (with the bottom wall) and 50 µs
later with the wall facing the transmitted shock wave; see figure 13(j). All shocks
and the vortex shed from the duct upper-left corner are accurately replicated in the
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Figure 13. A sequence of 23 alternating schlieren (a, c, e, etc.) and shadowgraph (b, d, f, etc.)
photographs (top) and corresponding simulations (bottom) showing the propagation of a shock
wave inside the Z-tunnel shown in figure 1(c). Initial conditions are P1 = 0.987 bar, T1 = 23.4◦,
and Ms = 1.3466. (a) Wave pattern at t = 25 µs, (b) 50 µs, (c) 75 µs, (d) 100 µs, (e) 125 µs, (f) 150 µs,
(g) 175 µs, (h) 200 µs, (i) 225 µs, (j) 250 µs, (k) 275 µs, (l) 300 µs, (m) 325 µs, (n) 350 µs, (o) 375 µs,
(p) 400 µs, (q) 425 µs, (r) 450 µs, (s) 475 µs, (t) 500 µs, (u) 525 µs, (v) 550 µs, (w) 575 µs.
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simulations. As time progresses, multiple reflections from the duct walls and from
collisions between reflected shock waves make the flow field highly non-steady in
which no simple structure exists.

The transition from the nearly self-similar flow observed in figures 13(b) to 13(g) to
the complex, highly time-dependent flow shown in figures 13(m) to 13(w) can easily
be seen in figures 13(h) to 13(l). First, the diffracted shock wave is reflected from the
duct bottom wall (figure 13h); 50 µs later three shock waves are present inside the
duct. Moving from left to right in figure 13(j) one observes the reflected shock wave
from the duct bottom wall, the part of the diffracted shock wave which propagates
toward the lower horizontal channel of the double-bend duct, and the reflected shock
wave from the duct right-hand vertical wall. An interesting wave pattern is observed
in figure 13(l). Part of the original diffracted shock wave is now seen at the beginning
(entrance) of the lower horizontal channel of the duct; it is followed by the shock
reflected from the duct bottom wall. This reflected wave is propagating toward the
duct upper wall; on its right-hand side it just reaches the duct lower expansion corner
and on its left it interacts with the vortex shed from the duct upper expansion corner.
Owing to this interaction it is weakened and experiences a change in its curvature, see
figure 13(l). The shock wave reflected from the duct right-hand vertical wall continues
its propagation toward the duct left-hand vertical wall and collides with the shock
reflected from the duct bottom wall. Also observed in figure 13(l) is the beginning of
an expansion vortex at the duct lower right-hand corner. At a later time, owing to
multiple collisions between various shock waves and between shock waves and the
duct walls, it is hard if not impossible to follow each wave. The resulting complex
flow is shown in figures 13(o) to 13(w).

The flow in the lower horizontal part of the duct is initially unsteady and not
uniform; see the curved shock at the entrance to the lower horizontal part of the
duct in figure 13(l). As time passes, the curved shock becomes a planar shock wave
followed by weak oblique shock waves (figures 13r, s, t). Later the oblique shocks
reduces to Mach waves (figure 13u) and in the last figure (figure 13w) the approach
to a uniform flow in the lower horizontal part of the duct is evident. However, the
flow in the space between the two horizontal parts of the duct is still far from being
steady or uniform.

It should be emphasized that throughout the flow duration investigated very good
agreement is found between experimental findings (schlieren and shadowgraph) and
the corresponding simulations. Obtaining good agreement between observed wave
patterns in recorded schlieren or shadowgraph photographs and their numerical
simulations is not a complete proof for the validity of the proposed physical model
and its numerical solution. To enhance confidence in the accuracy of the present
simulations, pressure measurement were recorded at the stations marked 1, 2, 3 and 4
in figure 1(c). (The location of these pressure gauges is also visible in shadow/schlieren
photos shown in figure 13). Pressure histories were computed at these points using
the GRP scheme, and the results are shown in figures 14(a) to 14(d). In figure 14(a)
the pressure signature of the transmitted shock wave, before reaching the duct first
expansive corner, is given. The expected shock wave signature is evident for the first
130 µs. That is, a sudden pressure jump (at t = 0) followed by a region of uniform
high pressure. In the subsonic post-shock flow, pressure starts declining upon the
arrival of disturbances (expansion) generated at the duct first expansive corner. The
second (weaker) shock wave, clearly seen in the simulation at about 500 µs after
termination of the uniform pressure zone, is due to the arrival of the upstream-facing
shock wave at the recording point. This shock wave is apparent in figure 13(u).
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Figure 14. Pressure histories at (a) station 1, (b) station 2, (c) station 3, (d) station 4, of figure 1(c).

The discrepancy observed at late times between computed and recorded pressure
is due to the following reason. As seen in the shadow/schlieren photos of figure 13
experiments were conducted inside a cookie-cutter inserted into the shock tube test
section. At late times shock waves reflected from the cookie-cutter supports diffract
into the double-bend duct investigated. Interference caused by these external waves
is not included in the present computations.

Results shown in figure 14(b) indicate the pressure history at a station close to the
second expansion corner of the duct; point 2 in figure 1(c). A clear pressure jump
is seen upon the arrival of the transmitted shock wave at this position; a very short
time after the event shown in figure 13(l). As could be expected this shock wave is
attenuated while passing through the duct, and therefore the recorded pressure jump
is smaller than that seen in figure 14(a). The wavy pressure history at point 2 is a
result of the oblique shock wave structure which follows the transmitted shock; this
wave pattern is seen in figures 13(n)–13(t).

Similar pressure histories are recorded/computed at positions 3 and 4 shown in
figure 1(c); this is shown in figures 14(c) and 14(d), respectively. As expected, the
further downstream the measuring station is, the lower is the pressure jump across
the transmitted shock wave. Again, discrepancies observed at late times between
computed and measured pressures are due to the exclusion of reflected shock waves
from the cookie-cutter support structure in the present computation. It is apparent
from figures 14(a) to 14(d) that very good agreement exists between the measured
and the computed pressures until disturbances caused by shock reflections from the
cookie-cutter support structure enter the flow field investigated. An additional reason
for the observed discrepancies, primarily near the exit from the double-bend duct, is
the fact that in the shock tube experiments the double-bend duct is a sub-insert in a
broad test section and the flow around it affects the conditions (pressure) prevailing
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Figure 15 (a–f). For caption see page 278.

near the exit of the double-bend duct. This effect is not included in the computational
configuration.

It is also clear from results shown in figure 14 that the Z-tunnel investigated is
effective in reducing the strength of the transmitted shock wave. While a pressure
jump of about 0.9 bar is experienced behind the entering shock wave (figure 14a), the
pressure jump behind the shock wave at station 4, in the duct outlet, is only about
half of the entrance value. A similar behaviour was observed for the shock wave
attenuation through the duct shown in figure 1(a); see figure 9.
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Figure 15 (g–l). For caption see page 278.

The last duct geometry to be investigated is shown in figure 1(d). It was divided
into a grid of 720×180 square cells. The experimental and numerical results obtained
are given in figures 15(a) to 15(v). The flow inside this duct is similar to that observed
for the duct shown in figure 1(c). The difference between the two cases is that the
chamber in figure 1(d) is twice the length of that in figure 1(c). The initial conditions
for the present case are: P1 = 0.982 bar, T1 = 23.7 ◦C and Ms = 1.53. Since we have
a significantly longer duct now, the transmitted shock wave will be weaker when
it approaches the exit of the double-bend duct. This weakening is manifested by a
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Figure 15 (m–r). For caption see page 278.

change in the shock wave reflection from the duct bottom floor, from the regular
reflection observed in the previous case (figures 13h to 13l), to a Mach reflection.
In the present case, reflection of the transmitted shock wave from the duct bottom
floor starts as a regular reflection (see figures 15h to 15l). The transmitted shock
wave in figure 15(l) is located beyond the end of the duct chamber in the previous
case (larger than 80 mm), and the shock wave Mach number at this location is
appropriate to a maximum flow deflection angle. Further decrease in the shock wave
Mach number results in a transition from regular to Mach reflection. This indeed
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Figure 15. A sequence of 22 alternating shadowgraph (a, c, e, etc.) and schlieren b, d, f, etc.)
photographs (top) and corresponding simulations (bottom) showing the propagation of a shock
wave inside the Z-tunnel shown in figure 1(d). Initial conditions are P1 = 0.982 bar, T1 = 23.7◦,
and Ms = 1.53. (a) Wave pattern at t = 20 µs, (b) 40 µs, (c) 60 µs, (d) 80 µs, (e) 100 µs, (f) 120 µs,
(g) 140 µs, (h) 160 µs, (i) 180 µs, (j) 200 µs, (k) 220 µs, (l) 240 µs, (m) 260 µs, (n) 280 µs, (o) 300 µs,
(p) 320 µs, (q) 340 µs, (r) 360 µs, (s) 380 µs, (t) 400 µs, (u) 420 µs, (v) 440 µs.

is the case, as is evident from figures 15(n) to 15(t). As could be expected, it is
apparent from these figures that as time passes, the Mach stem size is increasing.
The presence of a slipstream, starting from the triple point (where the three shock
waves, the transmitted, the reflected and the Mach stem, meet) is clearly noticeable in
figures 15(o) to 15(t). In the simulations it appears as a shift in the lines of constant
density.

As observed in the previous case shown in figure 13, here too the flow starts as a
nearly self-similar one; see figures 15(a) to 15(g). In figure 15(g) the transmitted shock
wave is just hitting the duct bottom wall. In figure 15(h) the reflected shock wave is
observed: it moves upward toward the duct upper wall. On its way it first interacts
with the secondary, upstream-facing shock wave (figure 15k). This upstream-facing
shock wave, which surrounds the vortex, is needed for matching the low-pressure zone
generated by the vortex to the high-pressure zone prevailing behind the transmitted
shock wave. This shock wave is first clearly observed in the shadowgraph shown in
figure 15(e). In simulations its location is marked by shift in isopycnals. As a result of
the interaction between the arch-shaped reflected shock wave and the secondary shock
wave, the reflected shock wave experiences a change in its curvature; see figure 15(k).
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As the reflected shock wave proceeds upward it collides with the corner shed vortex
(figure 15l) and it experiences further bending. Eventually it splits into two segments
as is evident from figure 15(m) on. The left-hand part, which moves faster due to the
induced vortex flow, hits the duct upper wall first; its reflection from the upper wall
is seen in figure 15(o). It takes a longer time for the right-hand part of the reflected
shock wave to reach the duct upper wall; about 60 µs after the observed reflection
of the left-hand part (figure 15o) the right-hand part is seen reflected from the duct
upper wall, see figure 15(r). As time progresses, the flow becomes very complex
and highly time dependent owing to multiple interactions between the various shock
waves, the walls and the vortex. It should be emphasized again that throughout the
flow duration very good agreement is found between experimental findings and their
simulations regarding the wave pattern, location and geometry, lending credibility to
the proposed physical model and its numerical simulation.

Owing to multiple interactions between various reflected shock waves and the
vortex shed from the duct left-hand corner, the vortex is distorted (figure 15m) and
thereafter splits to several vortices (figures 15o and 15q). As time progresses these
vortices spread in a pattern reminiscent of the classical von Kármán vortex street (see
figures 15u and 15v).

It is clear from the discussion regarding the flow and wave pattern evolving inside
a double-bend duct (like the geometries shown in figure 1), that the volume of the
intermediate double-bend space has a significant effect on the magnitude of the
pressure jump across the diffracting/transmitted shock wave. Increasing the volume
of the expansion chamber inside the double-bend duct also reduces the strength of
the transmitted shock wave. The reason for this is that the longer the chamber is, the
weaker is the transmitted shock wave diffracting over the first 90◦ expansion corner
of the ducts considered.

An optimum in the shock attenuation obtained exists since, once the diffracted
shock wave is reflected from the chamber bottom wall, the weakening diffraction
process is terminated. In order to clearly illustrate this effect, comparative computa-
tions were performed for seven different double-bend duct geometries. The parameter
changed was the ratio between the duct chamber length (L) and its horizontal
conduit height (H); see the sketch in figure 16. Computations were conducted for
L/H = 1, 2, 3, 4, 6, 8 and 16. In all computations the following initial conditions were
employed: P1 = 0.987 bar, T1 = 23.4 ◦C and Ms = 1.3466. Results obtained for pres-
sure histories at three stations in the lower horizontal part of the double-bend duct
are shown in figure 16. It is clear from these results that the intermediate double-bend
volume has a distinct effect on the pressure histories of the transmitted shock. For
L/H = 1 and 2 the difference in the post-shock pressure obtained is very small (see
figure 16). For L/H = 3 it is clear that the first pressure jump is smaller than in the
previous cases; however the magnitude of the maximum attained pressure is very sim-
ilar to that obtained for L/H = 1 or L/H = 2. A clear change in the pressure history
is evident when L/H = 4. Now the maximum pressure jump across the transmitted
shock wave decreases to about one half of what it was in cases with L/H = 1, 2 or 3;
see figure 16. This indicates that the transmitted shock wave is attenuated faster when
it expands into a duct having a larger chamber space. The second pressure jump is
also lower now, indicating that the reflected shock wave is also weaker in the present
case.

Another interesting phenomenon seen in figure 16 is that for L/H > 4, the first
pressure jump, across the transmitted shock wave, is almost independent of L/H .
This leads to the conclusion that there exists a critical value of L/H which controls
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Figure 16. Computed pressure histories at three points for double-bend ducts with different
intermediate spacing L.

the strength of the transmitted shock wave. This conclusion is clearly verified from
figure 17 where the peak pressure obtained behind the shock front is presented as
function of L/H . The pressures shown were computed at point P3 of the sketch in
figure 16. It is apparent from figure 17 that only a small decrease in pressure is
associated with increasing L/H within the range 1 < L/H < 3. A large decrease in
pressure is observed when L/H is increased from 3 to 4. Thereafter, further increase
in L/H results in only a mild decrease in the post-shock pressure. This indicates that
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Figure 17. Peak pressure behind the transmitted shock waves versus L/H .

for efficient shock attenuation by the double-bend duct considered an intermediate
spacing of L/H = 4 should be used (for incident shock wave Mach number of 1.35).

It should be noted that although real fluids are viscous, and our theoretical model
assumes an inviscid fluid, the numerical simulations exhibit corner-shed vortices akin
to those observed in experiments. The ‘inviscid’ mechanism by which these vortices
are generated is the strongly rotational flow generated by the curved shock wave
resulting from the expansive diffraction of the transmitted shock wave over the
upper-left and the lower-right corners of the duct. Apparently, at early times this
mechanism is the dominant one and lack of viscosity does not significantly alter
the vortex formation. Note however, that this argument is valid with respect to an
analytic solution of the Euler equations describing the corner shock diffraction. In
the numerical solution, truncation errors invariably give rise to a ‘numerical viscosity’,
so that strictly speaking, the numerical solution is never perfectly inviscid. Just the
same, no wall friction is present, so that with respect to the vortex shedding process,
vorticity is generated by the ‘inviscid mechanism’ previously described, and the wall
boundary layer is absent.

5. Concluding remarks
The flow field and wave pattern resulting from the propagation of an initially

planar shock wave through various double-bend ducts was studied experimentally
and theoretically/numerically. The experimental study includes optical diagnostics
(interferogram, schlieren and shadowgraph techniques) and pressure measurements.
In the theoretical part, the flow was assumed to be governed by the conservation
laws for a perfect, inviscid gas. Such a physical model is suitable for describing shock
waves propagation through non-regular ducts (like the double-bend duct considered),
at early times, before a steady flow is reached. For such short flow durations viscous
and heat transfer losses have a negligibly small effect on the flow. The numerical
scheme used for solving the proposed physical model, the GRP, provides a very
accurate simulation of the observed complex flow field throughout the flow duration
investigated.
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It was shown that double-bend duct geometry is effective in obtaining a quick
attenuation of the shock wave transmitted through it. Furthermore, there is a critical
value of L/H for which fast wave attenuation is obtained, which in the present case
was found at L/H = 4. For ratios above and/or below this critical value, changes
in pressure jump across the transmitted shock wave front associated with changes in
L/H are small.

Adding roughness to the duct wall further reduces the pressure jump across the
transmitted shock wave.

The excellent agreement observed between experimental results and the GRP
simulations provides evidence of the accuracy of the proposed physical model and its
numerical solution. It could therefore be safely used for other shock-wave-generated
flow fields.
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